

International Conference on Monte Carlo Techniques for Medical Applications (MCMA2017) Napoli, 16 -18 October 2017

Geant4 implementation of inter-atomic interference effect in Small-Angle Coherent X-ray Scattering for materials of medical interest

G. Paternò, P. Cardarelli, A. Contillo, M. Gambaccini and A. Taibi

Dipartimento di Fisica e Scienze della terra e INFN - Ferrara

Outline

- Theoretical background
- Implementation in Geant4
- Case studies

Theoretical background: Coherent Scattering

In **Rayleigh (Coherent) Scattering**, photons are scattered by **bound atomic electrons** without excitation of the target atom, i. e., the energy of incident and scattered photons is the same.

Theoretical background: Atomic Form Factor

The atomic form factor, F(q,Z) is the Fourier transform of the atomic electron density $\rho(r)$.

For spherically symmetric atoms:

$$
F(q, Z) = 4\pi \int_{0}^{\infty} \rho(r) \frac{\sin(qr/\eta)}{qr/\eta} r^2 dr
$$

F(q,Z) is a **monotonically decreasing** function of q that varies from **F(0,Z) = Z to F(∞,Z) = 0,** thus resulting **in a forward peaked scatter distribution**.

The most accurate form factors are those obtained from **non-relativistic Hartree-Fock calculations** (see, **Hubbell et al., 1975)** on which is based **EPDL97** of **LLNL**). *Atomic form factors of neutral atoms of the indicated*

elements, taken from the EPDL (Cullen et al., 1997).

Theoretical background: Molecular Form Factor

$$
F_{mol,IAM}^{2}(q) = W \sum_{i} \frac{W_{i}}{A_{i}} F^{2}(q, Z_{i})
$$

$$
F_{mol}^{2}(q) = F_{mol,IAM}^{2}(q) \cdot s(q)
$$

Independent-Atoms Model (IAM)

Molecular Interference (MI) effects appear in **liquid** and **amorphous solids** (not only in crystals). **The Interference function s(q)** depends on the statistical arrangement of the molecules (**short-range order**). It shows an **oscillatory behavior** and **tends to unity at high q values**. **It depends on the material** and is derived from **XRD experiments**.

The fraction of coherent scattering interactions is about 10% for materials and energies of medical interest but, due to MI, coherent radiation is not forward peaked and is distinguishable from primary radiation.

Geant4 simulation toolkit

Geant4 is a **open-source C++ based object-oriented** Monte Carlo toolkit for particle transport in matter. It is routinely used in **many scientific disciplines** included medical science. It provides:

- advanced geometry modeling,
- high quality physics models,
- advanced tracking algorithms,
- interactive facilities for visualization and execution.

For each physical process various models are available (specialized for particle type and energy scope). **Electromagnetic** physics foresees **Standard** and **Low Energy** packages.

In **Standard models**, the energy of the particles > 1 keV, the atom nucleus is free, the atomic electrons are quasi-free, and matter is described as homogeneous, isotropic, amorphous.

The **Low Energy package** extends the coverage of electromagnetic interactions down to 250/100 eV, it includes process based on **detailed models** (atom shell structure, precise angular distributions, polarization, etc).

The **coherent scattering models** current implemented in the official release **do not take into account the influence of molecular interference** -> **scatter figure can not be rigorously evaluated**.

Electromagnetic physics in Geant4

EM processes \longrightarrow

- Multiple scattering
- Bremsstrahlung
- **Ionization**
- Annihilation
- Photoelectric effect
- Compton scattering
- Rayleigh scattering
- e+e- pair production
- Synchrotron radiation
- Transition radiation
- **Cherenkov**
- **Scintillation**
- Refraction
- **Reflection**
- **Absorption**
- Fluorescence
- Auger

Livermore

• Based on evaluated data libraries from LLNL (**mixture of experiments and theories for electrons and photons**):

• à la Penelope

in **two** "**flavors" of models**:

• based on the Livermore Library

- EADL *(Evaluated Atomic Data Library)*
- EEDL *(Evaluated Electrons Data Library)*
- EPDL97 *(Evaluated Photons Data Library)*

especially formatted for Geant4 distribution *(courtesy of D. Cullen, LLNL)*

- Validity range: 250 eV 100 GeV
- Elements Z=1 to Z=100

Penelope

- The whole physics of Penelope code has been re-engineered into Geant4 (it benefit from OO power)
- Physics models by F. Salvat et al. (version 2008)
- **Mixed approach**: analytical, parameterized & data-driven (down to 100 eV)
- **Great care of atomic effects, fluorescence, Doppler broadening, etc**
- **Manages positrons**

MI effect implementation in Geant4

- **We modified Penelope model of Rayleigh scattering** (*G4PenelopeRayleighModel* class) in order to take into account MI effect by **reading custom molecular form factors** (through the new method: *ReadMolInterferenceData()*).
- **We prepared a database of modified molecular form factors for a set of material of medical interest** (various tissues and plastics). The files were positioned inside the directory "MIFF" located at the low energy data path:

Geant4_installation_path/share/Geant4-10.3.1/data/G4EMLOW6.50/penelope/rayleigh/

• Modified molecular form factors can be accessed by **assigning proper names to the materials** used in the simulation.

List of implemented Molecular Form Factors

A total of 24 Molecular Form Factors have been included

List of implemented Molecular Form Factors

A set of four components, namely **fat**, **water**, **bone matrix (BM)** and **hydroxyapatite (HA)**, **can represent a basis for the composition of the human tissues**. Once the basis is defined, **one can simulate any tissue by linear combination**.

$$
F^{2}(q) = a_{1}F_{fat}^{2}(q) + a_{2}F_{water}^{2}(q) + a_{3}F_{BM}^{2}(q) + a_{4}F_{HA}^{2}(q)
$$

Validation

A **dedicated tool** has been developed in Geant4 to test the molecular interference implementation.

It involves a simple cylindrical phantom with a detail embedded. The phantom is irradiated with an X-ray beam and the scattered photons are scored.

• geometry management

- **material management** (the "**basis approach**" is foreseen and can be activated by codifying the material composition in its name, e. g., "*MedMat_0.25_0.36_0.13_0.36*")
- **various input beam** settable through macro
- **settable physics** and cuts
- scoring through SteppingAction and SensitiveDetector.

Validation

Validation

Simulation of the experiment by Evans et al. 1991

Scattering of **polychromatic X-rays** (60 kVp and filtration of 0.5 mm Cu) **from a 5 mm-thick carcinoma sample.**

Simulations are in agreement with the experiment.

Application: rigorous simulation of SAXS

With Molecular Interference Without Molecular Interference $100₁$ 100 $30₀$ $30₀$ $80₁$ $80 -$ 60 $60₅$ 250 $25($ 40 $40¹$ -200 200 20 $20 Y$ (mm) Y (mm) 150 150 -20 -20 8° 12° -100 100 -40 -40 -60 -60 500 500 -80 $-80\frac{6}{3}$ -100^{120141} -100 I۵ $-100 - 80 - 60 - 40$ 20 80 $-100 - 80$ -60 20 60 40 60 100 -40 -20 Ω 40 80 100 X (mm) X (mm)

Scattering of a **20 keV pencil photon beam** impinging on a **5 cm-thick human breast** sample with a **1 mm-thick hydroxyapatite detail** embedded (simulating a calcification).

Application: identification of tissues

Scattering of a **20 keV** pencil photon beam incident on a **5 cm-thick human breast** sample with a **hydroxyapatite detail of various size** embedded (simulating a calcification).

Conclusions

• Molecular interference effect in coherent scattering has been implemented in Geant4 for a variety of materials.

• The implementation has been validated comparing Geant4 simulations with previous results obtained through a different MC code and experimental data.

• The proposed updating will allow the user to simulate more rigorously scatter figures and SAXS experiments in Geant4.

Back-up slides

X-ray diffraction (XRD) experiments

ADXRD

- Scattering signal acquired as a function of θ
- Monochromatic X-ray beam
- Low photon flux
- Higher resolution achievable

EDXRD

- Scattering signal acquired at fixed angle θ
- Polychromatic X-ray beam
- Require a spectroscopic detector
- Faster

It is possible to combine these methods to improve the sensitivity (see, for instance, Marticke et al., NIM A 867 (2017) 20-31)

Simulation of coherent scattering events

```
292 namespace { G4Mutex PenelopeRayleighModelMutex = G4MUTEX INITIALIZER: }
293 G4double G4PenelopeRayleighModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
294
                                    G4double enerav.
295
                                    G4double Z,
296
                                    G4double.
297
                                    G4double.
298
                                    G4double)
299f300 // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97
301
    // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel
302
     // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615.
303
304
      if (verboseLevel > 3)
305
      G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl;
306
307
      G4int iZ = (G4int) Z;308
309
      //Either Initialize() was not called, or we are in a slave and InitializeLocal() was
310
      //not invoked
311
      if (!logAtomicCrossSection)
312
      \mathcal{F}313
          //create a **thread-local** version of the table. Used only for G4EmCalculator and
314
          //Unit Tests
315
          fLocalTable = true:
316
          logAtomicCrossSection = new std::map<G4int,G4PhysicsFreeVector*>;
317
        \mathcal{F}318
      //now it should be ok
319
      if (!logAtomicCrossSection->count(iZ))
320
        \left\{ \right.321
          //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
322
          //not filled up. This can happen in a UnitTest or via G4EmCalculator
323
          if (verboseLevel > 0)
324
       \left\{ \right.325
         //Issue a G4Exception (warning) only in verbose mode
326
         G4ExceptionDescription ed:
327
         ed << "Unable to retrieve the cross section table for Z = " << 1Z << 64endl;
328
         ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl;
329
         G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
330
                 "em2040",JustWarning,ed);
331
332
          //protect file reading via autolock
                                                                                C++ \tightharpoondown Tab Width: 4 \tightharpoondownLn 305, Col 31
```
INS

Simulation of coherent scattering events

665 666 void G4PenelopeRavleighModel::SampleSecondaries(std::vector<G4DvnamicParticle*>*, 667 const G4MaterialCutsCouple* couple, 668 const G4DynamicParticle* aDynamicGamma. 669 G4double. 670 G4double) $671f$ 672 // Sampling of the Rayleigh final state (namely, scattering angle of the photon) 673 // from the Penelope2008 model. The scattering angle is sampled from the atomic 674 // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding // anomalous scattering effects. The Form Factor F(Q) function which appears in the 675 676 // analytical cross section is retrieved via the method GetFSquared(); atomic data 677 // are tabulated for F(0). Form factor for compounds is calculated according to // the additivity rule. The sampling from the $F(Q)$ is made via a Rational Inverse 678 679 // Transform with Aliasing (RITA) algorithm: RITA parameters are calculated once 680 // for each material and managed by G4PenelopeSamplingData objects. 681 // The sampling algorithm (rejection method) has efficiency 67% at low energy, and 682 // increases with energy. For E=100 keV the efficiency is 100% and 86% for 683 // hydrogen and uranium, respectively. 684 685 if (verboseLevel > 3) 686 G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl; 687 688 $G4$ double photonEnergy $\theta = aD$ ynamicGamma->GetKineticEnergy(); 689 690 **if** (photonEnerav0 <= fIntrinsicLowEneravLimit) 691 \uparrow 692 fParticleChange->ProposeTrackStatus(fStopAndKill); 693 $fParticleChange - SetProposedKineticEnergy(0.);$ 694 fParticleChange->ProposeLocalEnergyDeposit(photonEnergy0); 695 return : 696 \rightarrow 697 698 $G4ParticleMomentum photonDirection0 = aDvnamicGamma-SetMomentumDirection()$: 699 700 $const$ G4Material* theMat = couple->GetMaterial(); 701 702 703 //1) Verify if tables are ready 704 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was 705 //not invoked 706 if (!pMaxTable || !samplingTable || !logAtomicCrossSection || !atomicFormFactor || 707 !logFormFactorTable) 708 $C++$ \sim Tab Width: 4 \sim Ln 666, Col 31

INS

Implementation

```
DetectorConstruction.cc \times C4PenelopeRayleighModel.cc \times119matname = mbonematrix;
180
       \} else \{matname = "BoneMatrix-noint";181
182
        \mathcal{L}183
        BoneMatrix = new G4Material(matname, d BoneMatrix, nel);
184
        BoneMatrix->AddElement(elH, 0.0344);
185
        BoneMatrix->AddElement(elC, 0.7140);
186
        BoneMatrix->AddElement(elN, 0.1827);
187
        BoneMatrix->AddElement(el0, 0.0689);
188
189
        //Mineral (Hydroxyapatite)
190
       G4double d Mineral = 2.74 \times 9 / cm3:
191
       nel = 4:192
       if (IWantMI) {
193
            matname = "Mineral":194
       \} else {
195
            matname = "Mineral noint";196
197
       Mineral = new G4Material(matname, d Mineral, nel);
198
       Mineral->AddElement(elH, 0.002);
199
       Mineral->AddElement(el0, 0.414);
200
       Mineral->AddElement(elP. 0.185):
201
       Mineral->AddElement(elCa, 0.399);
202
203
       //Medical Material
204
        G4double comp[] = {Comp0, Comp1, Comp2, Comp3}; //enter the material composition
205
        G4double d_MedMat = d_Fat*d_Water*d_BoneMatrix*d_Mineral/(comp[0]*d_Fat*d_BoneMatrix*d_Mineral+comp[1]*d_Water*d_BoneMatrix*d_Mineral+comp
   [2]*d Fat*d Water*d Mineral+comp[3]*d Fat*d Water*d BoneMatrix);
       G4cout << "### MedMat density: " << d MedMat/(g/cm3) << " ###" << G4endl;
206
207
        G4int n MedMat = \theta;
208
        for (size_t i=0; i<4; i++) {
209
            if (\text{comp}[i] > 0) n MedMat++;
210
            if [comp[i] < 0 | [comp[i] > 1]211
                G4String excep = "Error in Medical Material composition: comp[i]<0 or comp[i]>1":
212
                G4Exception("DetectorConstuction::DefineMaterials()",
213
                "em0001", FatalException, excep);
214
                return:
215
            \mathcal{F}216
        \mathcal{F}217
        std::stringstream ss0,ss1,ss2,ss3;
218
        SS0 \ll comp[0]:219
        ss1 \ll \text{comp}[1]:220
        ss2 \ll comp[2];
221
        ss3 \ll \text{comp[3]};
```

```
C++ \vee Tab Width: 4 \times
```
Implementation

 \Box DetectorConstruction.cc \times \Box G4PenelopeRayleighM Copy the selection 438 G4PhysicsFreeVector* gravmatterFF = $MolInterferenceData \rightarrow find(24) \rightarrow second$; 439 440 $G45$ tring matname = material->GetName(): 441 442 //medical material: composition of fat, water, bonematrix, mineral if (matname.find("MedMat") != std::string::npos) { 443 G4cout << "MIFF: MedMat" << G4endl: 444 445 //get the material composition from its name 446 447 G4int ki, kf=6, ktot=19: G4double $comp[4]$; 448 449 G4String compstring = matname.substr($kf+1$, ktot); 450 for (size t $j=0$; $j<4$; $j++$) { 451 $ki = kf+1$: $kf = ki+4$: 452 compstring = matname.substr(k i, 4); 453 $comp[i] = atof(comptring.c str())$; 454 G4cout << "MedMat comp[" << $j+1$ << "]: " << $comp[j]$ << G4endl; 455 456 - } 457 458 //get and combine the molecular form factors with interference effect 459 for (size t $k=0$; $k<$ log 0 Square Grid. size(); $k++$) { G4double $ff2 = 0$: 460 G4double ffat = $(*fafter)[k]$: 461 G4double fwater = $(*waterF)[k];$ 462 463 G4double fbonematrix = $(*\text{bonematrixFF})[k];$ G4double fmineral = $(*mineraIFF)[k];$ 464 $ff2 = comp[0]*ffat*ffat+comp[1]*fwater*fnater+comp[2]*fbonematrix*fbonematrix+comp[3]*fmineral*fnineral;$ 465 if (ff2) theFFVec->PutValue(k,logQSquareGrid[k],std::log(ff2)); 466 467 $\}$ 468 -7 469 //other materials with interference function 470 471 **else if** (matname == "PMMA") { 472 G4cout << "MIFF: PMMA" << G4endl; 473 for (size t $k=0$; $k<$ logOSquareGrid.size(); $k++$) { G4double $ff2 = 0$: 474 475 G4double $f = (*PMMAFF)[k];$ 476 $ff2 = f*f;$ if (ff2) theFFVec->PutValue(k, logOSquareGrid[k], std:: log(ff2)); 477 478 \mathcal{F} 479 $\}$ else if (matname == "Adipose") { 480 G4cout << "MIFF: Adipose" << G4endl: 101 $f_{\alpha r}$ (size + $b_a, b_b, 1, a_0$ Counterid size(\, $b \in \mathcal{N}$)

Theoretical background: Coherent Scattering

The fraction of coherent scattering interactions is about 10% for materials and energies of medical interest but, due to MI, coherent radiation is not forward peaked and is distinguishable from primary radiation.

MI effect implementation in Geant4

Since coherent scattering total cross-section for compounds is managed by a separate class ad it remains approximately the same with and without MI for energies of medical interest (see the figure), **we used modified form factors only for the sampling of the photon angular deflection**.

Comparison of calculated coherent cross-section for carcinoma with and without molecular interference (Taibi et al., IEEE trans. on nuclear science, vol 47 n. 4, 2000, 1581-1586).

Simulation of coherent scattering events (Penelope algorithm)

First, the occurrence of a coh. scatt. event is determined from σ_{Ra} **, then the angular deflection is sampled**

$$
P_{Ra}(\cos\theta) = \frac{1+\cos^2\theta}{2} F^2(q) \qquad 0 \le q \le q_{max} = 2E/c = 2m_e c\kappa
$$

$$
P_{Ra}(\cos\theta) = g(\cos\theta)\pi(q^2) \qquad g(\cos\theta) = \frac{1+\cos^2\theta}{2} \qquad \pi(q^2) = F^2(q)
$$

rejection method

- 1. Using the **RITA algorithm**, sample a random value of q² from the distribution π (q²), restricted to the interval [0, q_{max}²].
- 2. Set cos θ =1-1/2*q²/k² (k=E/m_ec²). *(it comes from the definition of q=2E/c[sin(θ /2)]=(E/c[2(1-cosθ)]1/2)*
- 3. Generate a new random number ξ (uniformly distributed in the interval [0,1]).
-

4. If ξ>g(cosθ), go to step 3. *(note that g is a valid rejection function since 0<g1)*

5. Deliver cosθ.

Sampling efficiency higher than 66%

Application: identification of tissues

Scattering from a 5 cm-thick breast sample @ 20 keV

Application: identification of cancer signatures

Scattering from a 5 mm-thick detail embedded in a 5 cm-thick breast tissue @ 20 keV

